Number 2H Assessment

Higher Level

Clip Grade	Title of clip	Question(s)	Marked out of	Score	%
1545	Negative Indices	1 - 2	5		
1555	Error Intervals	3 - 4	4		
1565	Mathematical Reasoning	5 - 6	5		
	Recurring Decimals to Fractions		4		
1887	Fractional Indices.	10 - 11	8		
1897	Recurring Decimals - Proof	8 - 9	6		
2068/9	Upper and Lower Bounds	12 - 15	14		
2078/9	Surds	16 - 20	19		

1)	a) Find the value of 4^{-3} 1	8)	Prove algebraically that $0.45 = \frac{5}{11}$
	b) Find the value of $2^{-5} \times 5^{-1}$ 2		3
2)	Write these numbers in order of size, starting with the smallest.	9)	Express the recurring decimal 0.739 as a fraction in its simplest form.
	2° 2^{-1} 2^{3} 0.2 -2 2^{-2}		
	2		3
3)	A number, x , rounded to 1 decimal place is 7.2	10)	a) Find the value of $64^{\frac{2}{3}}$ 2
	Write down the error interval of x .		
	2		b) Find the value of $25^{-\frac{3}{2}}$ 3
4)	A number, <i>x</i> , rounded to 3 significant figures is 34600		1
	Write down the error interval of x .	11)	If $16^x = \frac{1}{8}$, find the value of <i>x</i> .
	2		
5)	Tony says, "Squaring an odd number always results in an even number."		x = 3
	Is he correct?	12)	The weight of a football is 425 grams, to the
	Write down a calculation to support your		nearest gram.
	answer.		a) What is the minimum the weight could be?
6)	<i>P</i> is an odd number.		b) What is the maximum the weight could be?
0)	Q is an even number.		g 1
	Explain why $P \times Q + 1$ is always an odd number.	13)	A rectangular field has a width of 37 metres, measured to the nearest metre.
			a) What is the upper bound of the width?
			m <u>1</u>
7)	3 Write each recurring decimal as an exact		The length of the field is 115 metres, measured to the nearest 5 metres.
	fraction in its simplest form. a) 0.6		b) Work out the upper bound for the perimeter of the field.
	2		m 2
	b) 0.372		
	2		

14)	A ball is thrown vertically upwards with a speed, V, in metres per second. The height, H, in metres, to which it rises is given by: $H = \frac{V^2}{2g}$ where g, in m ² /s, is the acceleration due to gravity.		a) Write $\sqrt{8}$ in the form $m\sqrt{2}$ where <i>m</i> is an integer.
			b) Write $\sqrt{75}$ in the form $k\sqrt{3}$ where <i>k</i> is an integer.
	V = 34.3 correct to 3 significant figures. g = 9.8 correct to 2 significant figures.		c) Rationalise $\frac{1}{\sqrt{5}}$ 2
	a) What is the lower bound of g?		d) Rationalise $\frac{3+\sqrt{2}}{\sqrt{2}}$ 2
	b) Calculate the upper bound of <i>H</i>.Give your answer to 3 significant figures.	17)	3 Expand $\sqrt{3} (2 + \sqrt{3})$ Give your answer in the form $a + b\sqrt{3}$
15)	3 A floodlight tower is marked WATTAGE NOT TO EXCEED 300000 WATTS	18)	Expand and simplify $(\sqrt{3} - \sqrt{5})(\sqrt{3} + \sqrt{5})$
	 The spotlights on the tower are rated at 2500 watts each and the manufacturer can only guarantee accuracy to the nearest 100 watts. a) What is the maximum number of spotlights that can safely be put on the tower? 	19)	3 Show that $(\sqrt{18} + \sqrt{2})^2$ is an integer.
	 2 The formula W = I²R connects W (watts), I (amps) and R (ohms). For one of the spotlights, the value of I is 25 amps measured to 2 significant figures. b) What is the minimum possible value of R? Give your answer to 2 significant figures. 	20)	$ 3$ The diagram shows a triangle <i>ABC</i> of area 36 cm ² . The length of <i>AB</i> is $6\sqrt{3}$ cm. C h h h A $6\sqrt{3}$ cm B
	3		Calculate the perpendicular height (<i>h</i>) of the triangle. Write your answer in the form $p\sqrt{3}$, where <i>p</i> is an integer.

_ 3