## Algebra 5H Assessment

Higher Level

| Clip Grade | Title of clip | Question(s) | Marked out of | Score |
| :---: | :---: | :---: | :---: | :---: |
| 193 | . Algebraic Proof | . 1 | 7 |  |
| 194..... 7. | Exponential Functions. | . . 2 - 3 | 7 | - |
| 195..... 7. | Trigonometric Graphs | . 4-6 | 10 |  |
| 196..... 7 . | Transformation of Functions | .. 7-8 | 8 |  |
| 197. .... 7. | Equation of a Circle | . 9-10 | 10 |  |
| 198..... $7 .$. | Regions | . . 11-12 | 8 |  |

## Out of 50 <br> TOTAL <br> SCORE

$\qquad$
Final
Percentage
$\square$

1) a) Prove algebraically that the difference between the squares of any two consecutive numbers is always an odd number.
b) Prove that $(5 n+1)^{2}-(5 n-1)^{2}$ is a multiple of 5 for all positive integer values of $n$
2) The graph shows the sketch of $y=a b^{x}$

The curve passes through the points $(0,0.25)$ and $(2,4)$.
a) Find the value of $a$ and the value of $b$.

$$
a=
$$

$$
b=
$$

$\qquad$ 3
b) The point $\mathrm{C}(-0.5, k)$ lies on the curve.

Find the value of $k$.

$$
k=
$$


3) The price of a house on Percy Street increases exponentially.

Its price increases by $2.5 \%$ every year.
When the house is 5 years old it is worth $£ 275000$.
What was the original price of the house (to the nearest $£ 1000$ ) when new?

$$
£
$$

$\qquad$
4) a) Sketch the graph of $y=\cos x$ in the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$

b) In the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$, find the values of $x$ for which $\cos x=0.2588$
Give your answers to the nearest degree.
$x=$ $\qquad$。, $\qquad$ $\circ$
5) a) Sketch the graph of $y=\sin x$ in the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$

b) In the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$, find the values of $x$ for which $\sin x=-0.1769$
Give your answers to the nearest degree.
$\qquad$ $\circ$
6) In the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$, find the values of $x$ for which $\tan x=1.926$

Give your answers to the nearest degree.

$$
x=\square^{\circ}, \quad{ }^{\circ} \quad 2
$$

7) The diagram shows the graph of $y=\mathrm{f}(x)$


On the axes below, sketch the graph of each of these functions (the graph of $y=\mathrm{f}(x)$ is shown dotted to help you).
a) $y=\mathrm{f}(x)-2$
b) $y=\mathrm{f}(x-2)$

8) The solid curve has equation $y=x^{3}+x^{2}-1$
a) Write down an equation of the dotted curve.

$$
y=
$$

$\qquad$ 2
b) Describe the transformation that maps the solid curve onto the dotted one.

9) a) A circle has its centre at the origin and a radius of 5 .

What is its equation? $\qquad$ 2
b) A circle has equation $x^{2}+y^{2}=64$

What is the length of the radius? $r=$ $\qquad$ 2
10) a) Draw the graph of $x^{2}+y^{2}=16$
b) Using your graph, estimate the solutions of the equations

$$
\begin{aligned}
& x^{2}+y^{2}=16 \\
& y=x+1
\end{aligned}
$$

Give your answers to 1 decimal place.

$$
\begin{array}{l|l}
x= & x= \\
y= & y= \\
y=
\end{array}
$$


11) Put a label, $R$, in the region on the grid on the right satisfied by all three inequalities below.

$$
x \leqslant 4
$$

$y \geqslant x$
$y \leqslant 2 x-3$
4

12) Use inequalities to describe the shaded area on the grid on the left.

