Answers

Calculator

GCSE Maths
Revision Higher Booklet

DEYOND

Calculator

 GCSE Maths Revision Higher Booklet 2 AnswersWeek 1 page 1
Week 2 page 6
Week 3 page 11
Week 4 page 16
Week 5 page 22
Week 6 page 28
Week 7 page 33

Question Number	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

BEYOND maths

1. Simplify $\frac{x+1}{4 x+4}$
$\frac{1}{4}$
2. The diagram shows a sector of a circle of radius 4 cm . Calculate the area of the sector, giving your answer correct to 3 significant figures.

$\frac{120}{360} \times \pi \times 4^{2}=16.8 \mathrm{~cm}^{2}$ (to 3 significant figures)
3. Bella invests $£ 800$ in a bank account which offers 2% compound interest per annum. How much will Bella have in her bank account after 3 years?
$800 \times 1.02^{\mathbf{3}}=£ 848.97$ (to the nearest penny)
4. Factorise fully: $x^{2}+10 x+21$
$(x+3)(x+7)$
5. Write $0 . \dot{7}$ as a fraction in its simplest form. You must show your working.

Let $x=0.77777 .$. .
$10 x=7.77777 . .$.

$$
\begin{aligned}
9 x & =7 \\
x & =\frac{7}{9}
\end{aligned}
$$

6. Solve $4 x+1<10$
$4 x<9$
$x<\frac{9}{4}$ or 2.25
7. Prove that $(n+1)^{2}-(n-1)^{2}=4 n$
$(n+1)^{2}=n^{2}+2 n+1$
$(n-1)^{2}=n^{2}-2 n+1$
$n^{2}+2 n+1-\left(n^{2}-2 n+1\right)=4 n$
8. Make x the subject: $5 x+y=p q$
$5 x=p q-y$
$x=\frac{p q-y}{5}$
9. Find the equation of the line that passes through the points with coordinates $(0,1)$ and $(2,5)$.
$m=\frac{5-1}{2-0}=\mathbf{2}$
$y=2 x+1$
10. The diagram shows a circle centred at O . Work out the size of the angle marked x, giving reasons for each stage of your working.

The angle in a semi-circle is 90° (or similar). Angles in a triangle add to 180°.

$$
\begin{aligned}
& x=180-90-73 \\
& x=17^{\circ}
\end{aligned}
$$

11. The diagram shows the frustum of a cone. The height of the cone is 30 cm and the height of the frustum is 20 cm . The radius of the base of the cone is 9 cm . Work out the volume of the frustum, giving your answer in terms of π.

Scale factor $=\mathbf{3 0} \div \mathbf{1 0}=\mathbf{3}$
Radius of 'top' cone $=9 \div 3=3 \mathrm{~cm}$
Volume of a cone $=\frac{1}{3} \pi r^{2} h$
Volume $=\frac{1}{3} \times \pi \times 9^{2} \times 30-\frac{1}{3} \times \pi \times 3^{2} \times 10=780 \pi \mathrm{~cm}^{3}$
12. $a: b=3: 2$ and $b: c=4: 7$. Write the ratio $a: c$ in its simplest form.
$a: b=6: 4$
$a: b: c=6: 4: 7$
$a: c=6: 7$
13. On the Venn diagram, shade AuB.

14. Solve $2 x^{2}+3 x-4=0$, giving your answer correct to 1 decimal place.
$\boldsymbol{x}=\frac{-3 \pm \sqrt{3^{2}-4 \times 2 \times(-4)}}{2 \times 2}$
$x=0.9$ or -2.4
15. $\overrightarrow{A B}=\mathbf{a}$ and $\overrightarrow{A C}=\mathbf{b}$. Write down the vector $\overrightarrow{B C}$.

$\overrightarrow{\mathbf{B C}}=\mathbf{b}-\mathbf{a}$
16. Solve the simultaneous equations.

$$
\begin{aligned}
& x+3 y=5 \\
& x+y=1 \\
& 2 y=4 \\
& y=2 \\
& x+2=1 \\
& x=-1
\end{aligned}
$$

17. Write as a single power of 2 :
4^{3}
$\left(2^{2}\right)^{3}=2^{6}$
18. Solve the equation $\sin (x)=0.5$ for $0^{\circ} \leq x \leq 360^{\circ}$.

$$
\begin{aligned}
& x=\sin ^{-1}(0.5)=30^{\circ} \\
& x=30^{\circ}, 150^{\circ}
\end{aligned}
$$

19. Work out the value of $\left(3 \times 10^{4}\right) \times\left(7 \times 10^{5}\right)$, giving your answer in standard form.
$21 \times 10^{9}=2.1 \times 10^{10}$
20. The histogram shows information about the ages of some employees in a company. Draw a histogram representing this information.

Age $(x$ years $)$	Frequency	Frequency Density
$16 \leq x<20$	8	$\mathbf{8} \div \mathbf{4}=\mathbf{2}$
$20 \leq x<30$	15	$\mathbf{1 5} \div \mathbf{1 0}=\mathbf{1 . 5}$
$30 \leq x<50$	24	$\mathbf{2 4} \div \mathbf{2 0}=\mathbf{1 . 2}$
$50 \leq x<55$	9	$\mathbf{9} \div \mathbf{5}=\mathbf{1 . 8}$
$55 \leq x<70$	15	$\mathbf{1 5} \div \mathbf{1 5}=\mathbf{1}$

1. Simplify $\frac{x+5}{3 x^{2}+15 x}$
$\frac{1}{3 x}$
2. The diagram shows a sector of a circle of radius 6 cm . Calculate the area of the sector, giving your answer correct to 3 significant figures.

$\frac{80}{360} \times \pi \times 6^{2}=25.1 \mathrm{~cm}^{2}$ (to 3 significant figures)
3. Bella invests $£ 1200$ in a bank account which offers 3.5% compound interest per annum. How much will Bella have in her bank account after 4 years?
$1200 \times 1.035^{4}=£ 1377.03$ (to the nearest penny)
4. Factorise fully: $x^{2}-6 x-16$
$(x+2)(x-8)$
5. Write $0.1 \dot{3}$ as a fraction in its simplest form. You must show your working.

Let $x=0.131313 .$. .
$100 x=13.131313$...
$99 x=13$
$x=\frac{13}{19}$
6. Solve $-4 \leq 5 x+1<27$
$-5 \leq 5 x<26$
$-1 \leq x<5.2$
7. Prove that $(n+2)^{2}-(n-2)^{2}$ is a multiple of 4 for all integer values of n.
$(n+2)^{2}=n^{2}+4 n+4$
$(n-2)^{2}=n^{2}-4 n+4$
$n^{2}+4 n+4-\left(n^{2}-4 n+4\right)=8 n$
$8 n=4(2 n)$ which is, by definition, a multiple of 4.
8. Make x the subject: $\frac{2 x}{y}=q$
$2 x=q y$
$x=\frac{q y}{2}$
9. Find the equation of the line that passes through the points with coordinates $(2,3)$ and $(10,5)$.
$m=\frac{5-3}{10-2}=\frac{1}{4}$
$y=\frac{1}{4} x+c$
$3=\frac{1}{4} \times 2+c$
$c=\frac{5}{2}$
$y=\frac{1}{4} x+\frac{5}{2}$
10. The diagram shows a triangle inscribed in a circle. Is the line $A B$ the diameter of the circle? Give reasons for your answer.

The angle in a semi-circle is 90° (or similar), and angles in a triangle add to 180°.

180-36-54 = 90°, as required.
Yes, $A B$ is the diameter of the circle.
11. The diagram shows the frustum of a cone. The height of the cone is 40 cm and the height of the frustum is 20 cm . The radius of the base of the cone is 10 cm . Work out the volume of the frustum, giving your answer in terms of π.

Scale factor $=\mathbf{4 0} \div \mathbf{2 0}=\mathbf{2}$
Radius of 'top' cone $=10 \div 2=5 \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \pi r^{2} h$
Volume $=\frac{1}{3} \times \pi \times 10^{2} \times 40-\frac{1}{3} \times \pi \times 5^{2} \times 20=\frac{3500}{3} \pi \mathrm{~cm}^{3}$
12. $a: b=4: 3$ and $b: c=5: 2$. Write the ratio $a: c$ in its simplest form.
$a: b=20: 15$
$b: c=15: 6$
$a: c=20: 6=10: 3$
13. On the Venn diagram, shade $A \cap B$.

14. Solve $3 x^{2}-x-5=0$, giving your answer correct to 1 decimal place.

$$
\begin{aligned}
& x=\frac{1 \pm \sqrt{(-1)^{2}-4 \times 3 \times(-5)}}{2 \times 3} \\
& x=-1.1 \text { or } 1.5
\end{aligned}
$$

15. $\overrightarrow{A B}=\mathbf{a}$ and $\overrightarrow{A C}=\mathbf{b}$. Point P lies at the midpoint of $B C$. Write down the vector $\overrightarrow{\mathrm{AP}}$.

$\overrightarrow{B C}=b-a$
$\overrightarrow{A P}=a+\frac{1}{2}(b-a)=\frac{1}{2}(b+a)$
16. Solve the simultaneous equations.
$2 x+3 y=0$
$x-y=5$
$5 x=15$
$x=3$
$3-y=5$
$y=-2$
17. Write as a single power of $2: \frac{1}{8}$
$\left(2^{3}\right)^{-1}=2^{-3}$
18. Solve the equation $\cos (x)=1$ for $0^{\circ} \leq x \leq 360^{\circ}$.

$$
\begin{aligned}
& x=\cos ^{-1}(1)=0^{\circ} \\
& x=0^{\circ}, 360^{\circ}
\end{aligned}
$$

19. Work out the value of $\left(4 \times 10^{6}\right) \div\left(8 \times 10^{2}\right)$, giving your answer in standard form.
$0.5 \times 10^{4}=5 \times 10^{3}$
20. The table shows information about the ages of some employees. Fill in the missing gaps.

Age (x years)	Frequency	Frequency Density
$16 \leq x<20$	9	$\mathbf{9} \div \mathbf{4}=\mathbf{2 . 2 5}$
$20 \leq x<30$	$\mathbf{1 . 5} \times \mathbf{1 0}=\mathbf{1 5}$	1.5
$30 \leq x<50$	7	$\mathbf{7} \div \mathbf{2 0}=\mathbf{0 . 3 5}$
$50 \leq x<55$	$\mathbf{2 . 2 \times 5}=\mathbf{1 1}$	2.2
$55 \leq x<\mathbf{7 0}$	9	$\mathbf{9} \div \mathbf{1 5}=\mathbf{0 . 6}$

1. Simplify $\frac{x+6}{x^{2}+10 x+24}$

$$
\frac{1}{x+4}
$$

2. The diagram shows a sector of a circle of radius 9 cm . Calculate the arc length of the sector, giving your answer correct to 3 significant figures.

$\frac{60}{360} \times \pi \times 18=9.42 \mathrm{~cm}$ (to 3 significant figures)
3. Bella invests $£ 500$ in a bank account which offers 0.12% compound interest per annum. How much will Bella have in her bank account after 3 years?
$500 \times 1.0012^{\mathbf{3}}=£ 501.80$ (to the nearest penny)
4. Factorise fully: $x^{2}-36$

$$
(x-6)(x+6)
$$

5. Write 0.25 as a fraction in its simplest form. You must show your working.

$$
\begin{aligned}
\text { Let } x & =0.25555 \ldots \\
100 x & =25.555 \ldots \\
10 x & =2.555 \ldots \\
90 x & =23 \\
x & =\frac{23}{90}
\end{aligned}
$$

6. Solve $8-2 x>3$
$-2 x>-5$
$x<2.5$
7. Prove that $n^{2}+2 n+1$ is always a square number for integer values of n.
$n^{2}+2 n+1=(n+1)(n+1)=(n+1)^{2}$
This is a square number.
8. Make x the subject: $\frac{w+x}{u}=y$
$w+x=u y$
$x=u y-w$
9. Find the equation of the line that passes through the points with coordinates ($4,-1$) and $(2,3)$.
$m=\frac{3-(-1)}{2-4}=\frac{4}{-2}$
$y=-2 x+c$
$3=-2 \times 2+c$
$c=7$
$y=-2 x+7$
10. The diagram shows triangles $A B C$ and $B C D$ inscribed inside a circle. Is AC the diameter of the circle? You must give reasons for your answer.

Angle $B A C=32^{\circ}$ since angles in the same segment are equal.
Angle ABC $=180-58-32=90^{\circ}$ since angles in a triangle sum to 180°.

We know that the angle subtended from the diameter is 90° therefore AC must be the diameter of the circle.
11. A frustum is made by removing a small cone from a larger cone as shown. Work out the volume of the frustum, giving your answer correct to 3 significant figures.

Scale factor $=16 \div 4=4$
Height of small cone $=\boldsymbol{x}$
Height of large cone $=18+\boldsymbol{x}$
$18+x=4 x$
$x=6$
Volume of small cone $=\frac{1}{3} \times \pi \times 4^{2} \times 6=32 \pi \mathrm{~cm}^{3}$
Volume of large cone $=\frac{1}{3} \times \pi \times 16^{2} \times 24=2048 \pi \mathrm{~cm}^{3}$
Volume of frustum $=2048 \pi-32 \pi=6333.45 . . . \mathrm{cm}^{3}$
Volume is $6330 \mathrm{~cm}^{3}$ correct to 3 significant figures.
12. $a: b=4: 3$ and $b: c=5: 2$. Write a as a fraction of c, giving your answer in the form $a=\frac{x}{y} c$, where x and y are integers.
$a: b=20: 15$
$b: c=15: 6$
$a: c=20: 6=10: 3$
$a=\frac{10}{3} c$
13. On the Venn diagram, shade A'.

14. Solve $2 x^{2}+x=4$, giving your answer correct to 1 decimal place.
$x=\frac{-1 \pm \sqrt{(1)^{2}-4 \times 2 \times(-4)}}{2 \times 2}$
$x=1.2$ or -1.7
15. $A B C D$ is a parallelogram. $\overrightarrow{A B}=\mathbf{a}$ and $\overrightarrow{B C}=\mathbf{b}$. Point P lies at the midpoint of DC. Write down the vector $\overrightarrow{A P}$.
$\overrightarrow{\mathrm{AP}}=\mathrm{b}+\frac{1}{2} \mathrm{a}$

16. Solve the simultaneous equations.

$$
\begin{aligned}
& 3 x+4 y=19 \\
& 4 x+3 y=23 \\
& 16 x+12 y=92 \\
& -9 x+12 y=57 \\
& \hline 7 x \quad=35 \\
& x=5
\end{aligned}
$$

$$
15+4 y=19
$$

$$
4 y=4
$$

$$
y=1
$$

17. Write as a single power of 2 :
$4^{2} \times\left(\frac{1}{2}\right)^{-1}$
$\left(2^{2}\right)^{2} \times 2^{1}=2^{5}$
18. Solve the equation $\tan (x)=1$ for $0^{\circ} \leq x \leq 360^{\circ}$.
$x=\tan ^{-1}(1)=45^{\circ}$
$x=45^{\circ}, 225^{\circ}$
19. Work out the value of $\left(3 \times 10^{4}\right)^{3}$, giving your answer in standard form.
$27 \times 10^{12}=2.7 \times 10^{13}$
20. The table shows information about the ages of some employees in a company. Fill in the missing gaps and explain how you know that a mistake has been made.

Age $(x$ years $)$	Frequency	Frequency Density
$16 \leq x<24$	10	$\mathbf{1 0} \div \mathbf{8}=\mathbf{1 . 2 5}$
$24 \leq x<30$	$\mathbf{0 . 8} \times \mathbf{6}=\mathbf{4 . 8}$	0.8
$30 \leq x<50$	18	$\mathbf{1 8} \div \mathbf{2 0}=\mathbf{0 . 9}$
$50 \leq x<60$	$\mathbf{1 . 4} \times \mathbf{1 0}=\mathbf{1 4}$	1.4
$60 \leq x<75$	12	$\mathbf{1 2} \div \mathbf{1 5}=\mathbf{0 . 8}$

You cannot have a frequency of 4.8.

Week 4 - GCSE Maths Revision Higher Booklet 2 Answers

1. Simplify $\frac{2 x-6}{x^{2}+x-12}$
$\frac{2}{x+4}$
2. The diagram shows a sector of a circle of radius 4 cm . Calculate the arc length of the sector, giving your answer correct to 3 significant figures.

$\frac{110}{360} \times \pi \times 8=7.68 \mathrm{~cm}$ (to 3 significant figures)

3. Bella invests $£ 500$ in a bank account which offers 2.1% compound interest per annum. After how many years will Bella have more than $£ 600$?
$500 \times 1.021^{8}=£ 590.44$ (to the nearest penny)
$500 \times 1.021^{9}=£ 602.84$ (to the nearest penny)
9 years.
4. Factorise fully: $4 x^{2}-25$
$(2 x-5)(2 x+5)$
5. Write $0.25 \dot{1}$ as a fraction in its simplest form. You must show your working.

$$
\begin{aligned}
\text { Let } x & =0.251515151 \ldots \\
1000 x & =251.515151 \ldots \\
10 x & =2.515151 \ldots \\
990 x & =249 \\
x & =\frac{249}{990}=\frac{83}{330}
\end{aligned}
$$

6. Solve $3 x^{2} \geq 75$
$x^{2} \geq 25$
$x^{2}-25 \geq 0$
$(x-5)(x+5) \geq 0$
$x \leq-5$ and $x \geq 5$

7a. Write $x^{2}-2 x+7$ in the form $(x+a)^{2}+b$, where a and b are integers.
$x^{2}-2 x+7=(x-1)^{2}-1+7=(x-1)^{2}+6$
7b. Hence, prove that $x^{2}-2 x+7$ is positive for all real values of x.
$(x-1)^{2}$ is positive (since any real number squared is always positive). A positive plus a positive is positive, so $x^{2}-2 x+7$ is positive.
8. Make x the subject: $(x+y)^{2}=t$
$x+y=\sqrt{t}$
$x=\sqrt{t}-y$
9. A line segment starts at the point $(0,0)$ and finishes at $(2,4)$. Find the equation of the perpendicular bisector to this line segment.
$m_{1}=\frac{4-0}{2-0}=2$
$m_{2}=-\frac{1}{2}$
Midpoint is $(1,2)$.
$y=-\frac{1}{2} x+c$
$2=-\frac{1}{2} \times 1+c$
$c=\frac{5}{2}$
$y=-\frac{1}{2} x+\frac{5}{2}$
10. The diagram shows triangles $A B C$ and $B C D$ inscribed inside a circle, such that BD is the diameter of the circle. Find the size of angle CED, giving reasons at each stage of your working.

Angle $B C D=90^{\circ}$ since angles in a semi-circle are 90°.
Angle ECD = 90-63 = 27°.
Angle CED = 180-(32+27)=121 ${ }^{\circ}$ since angles in a triangle sum to 180°.
11. A frustum is made by removing a small cone from a larger cone as shown. Work out the volume of the frustum, giving your answer correct to 3 significant figures.

Scale factor $=12 \div 4=3$
Height of small cone $=\boldsymbol{x}$
Height of large cone $=16+x$
$16+x=3 x$
$x=8$

Volume of small cone $=\frac{1}{3} \times \pi \times 4^{2} \times 8=\frac{128}{3} \pi \mathrm{~cm}^{3}$
Volume of large cone $=\frac{1}{3} \times \pi \times 12^{2} \times 24=1152 \pi \mathrm{~cm}^{3}$
Volume of frustum $=1152 \pi-\frac{128}{3} \pi=3485.07 \ldots \mathrm{~cm}^{3}$
Volume is $3490 \mathrm{~cm}^{3}$ correct to 3 significant figures.
12. $a: b=5: 7$ and $b: c=2: 3$. Write a as a fraction of c, giving your answer in the form $a=\frac{x}{y} c$, where x and y are integers.
$a: b=10: 14$
$b: c=14: 21$
$a: c=10: 21$
$a=\frac{10}{21} c$
13. On the Venn diagram, shade $A \cap B^{\prime}$.

14. Solve $x^{2}=5 x+9$, giving your answer correct to 1 decimal place.
$x=\frac{5 \pm \sqrt{(-5)^{2}-4 \times 1 \times(-9)}}{2 \times 1}$
$x=6.4$ or -1.4
15. $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$. Point P lies on $A B$ such that $A P: P B=4: 1$. Write down the vector $\overrightarrow{A P}$.

$\overrightarrow{A B}=b-a$
$\overrightarrow{A P}=\frac{4}{5}(b-a)$
16. Solve the simultaneous equations.

$$
\begin{aligned}
& 6 x-4 y=22 \\
& 4 x+5 y=7 \\
& 12 x-8 y=44 \\
& -12 x+15 y=21 \\
& \hline-23 y=23 \\
& y=-1 \\
& 4 x-5=7 \\
& 4 x=12 \\
& x=3
\end{aligned}
$$

17. Write as a single power of $2: \frac{1}{4} \times 16^{4}$
$2^{-2} \times\left(2^{4}\right)^{4}=2^{-2} \times 2^{16}=2^{14}$
18. Solve the equation $\cos (x)=0.2$ for $0^{\circ} \leq x \leq 360^{\circ}$.
$x=\cos ^{-1}(0.2)=78.5^{\circ}$
$x=78.5^{\circ}, 281.5^{\circ}$ (correct to 1d.p.)
19. Work out the value of $2.1 \times 10^{4}+3 \times 10^{2}$, giving your answer in standard form.
$21300=2.13 \times 10^{4}$
20. The histogram shows information about the ages of some employees in a company. Calculate the frequencies for each group.

Age (years)

Age $(x$ years)	Frequency	Frequency Density
$16 \leq x<20$	$\mathbf{4 . 5} \times \mathbf{4}=\mathbf{1 8}$	$\mathbf{4 . 5}$
$20 \leq x<30$	$3.7 \times \mathbf{1 0}=\mathbf{3 7}$	$\mathbf{3 . 7}$
$30 \leq x<50$	$\mathbf{0 . 6} \times \mathbf{2 0}=\mathbf{1 2}$	$\mathbf{0 . 6}$
$50 \leq x<55$	$\mathbf{1 . 8} \times \mathbf{5}=\mathbf{9}$	$\mathbf{1 . 8}$
$55 \leq x<70$	$\mathbf{1} \times \mathbf{1 5}=\mathbf{1 5}$	$\mathbf{1}$

Week 5 - GCSE Maths Revision Higher Booklet 2 Answers

1. Simplify $\frac{x^{2}-x-20}{x^{2}-4 x-5}$
$\frac{x+4}{x+1}$
2. The diagram shows a sector of a circle of radius 4 cm . Given that the area of the sector is $4.19 \mathrm{~cm}^{2}$, work out the size of angle θ, giving your answer correct to 1 decimal place.

$$
\frac{\theta}{360} \times \pi \times 4^{2}=4.19 \quad \theta=30.0^{\circ}
$$

3. Bella invests some money in a bank account which offers 2% compound interest per annum. She leaves her money in the account for 4 years. What is the single percentage increase in the money in her account?
$1.02^{4}=1.0824$...
This is an 8.2\% increase correct to 1 decimal place.
4. Factorise fully: $49 x^{3}-64 x$

$$
x\left(49 x^{2}-64\right)=x(7 x-8)(7 x+8)
$$

5. Write $0.13 \dot{4}$ as a fraction in its simplest form. You must show your working.

$$
\begin{aligned}
\text { Let } x & =0.1343434 \ldots \\
1000 x & =134.343434 \ldots \\
10 x & =1.343434 \ldots \\
990 x & =133 \\
x & =\frac{133}{990}
\end{aligned}
$$

6. Solve $x^{2}+9 \leq 25$
$x^{2}-16 \leq 0$
$(x-4)(x+4) \leq 0$
$x \leq-4$ and $x \geq 4$

7a. Write $x^{2}-4 x+6$ in the form $(x+a)^{2}+b$, where a and b are integers. $x^{2}-4 x+6=(x-2)^{2}-4+6=(x-2)^{2}+2$
7b. Hence, prove that $x^{2}-4 x+6$ is positive for real values of x.
$(x-2)^{2}$ is positive (since any real number squared is always positive). A positive plus a positive is positive, so $x^{2}-4 x+6$ is positive.
8. Make x the subject: $(3 x+y)^{3}=t+p$
$3 x+y=\sqrt[3]{t+p}$
$x=\frac{\sqrt[3]{t+p}-y}{3}$
9. A line segment starts at the point $(1,3)$ and finishes at $(3,5)$. Find the equation of the perpendicular bisector to this line segment.
$m_{1}=\frac{5-3}{3-1}=1$
$m_{2}=-1$
Midpoint is $(2,4)$.
$y=-x+c$
$4=-2+c$
$c=6$
$y=-x+6$
10. The diagram shows triangles $A B C$ and $B C D$ inscribed inside a circle, such that BD is the diameter of the circle. Find angle CED, giving reasons at each stage of your working.

Angle $B C D=90^{\circ}$ since angles in a semi-circle are 90° (or similar).
Angle ECD = 90-70 = 20 .
Angle CED = 180-(20 +41) = 119° since angles in a triangle sum to 180°.
11. A frustum is made by removing a small cone from a larger cone as shown. Calculate the curved surface area of the frustum. Give your answer correct to three significant figures.

Scale factor $=12 \div 4=3$
Height of small cone $=\boldsymbol{x}$
Height of large cone $=16+\boldsymbol{x}$
$16+x=3 x$
$x=8$
Sloped length of small cone $=\sqrt{8^{2}+4^{2}}=4 \sqrt{5} \mathrm{~cm}$
Sloped length of large cone $=\sqrt{24^{2}+12^{2}}=12 \sqrt{5} \mathrm{~cm}$
Curved surface area of small cone $=\pi \times 4 \times 4 \sqrt{5}=112.3$...cm ${ }^{2}$
Curved surface area of large cone $=\pi \times 12 \times 12 \sqrt{5}=1011.5 . . . \mathrm{cm}^{2}$
Curved surface area of frustum $=1011.5 . . .-112.3 . . .=899.1 . . \mathrm{cm}^{2}$
Curved surface area is $899 \mathrm{~cm}^{2}$ correct to 3 significant figures.
12. $a: b=3: 5$ and $b: c=4: 9$. Write a as a fraction of c, giving your answer in the form $a=\frac{x}{y} c$, where x and y are integers.
$a: b=12: 20$
$b: c=20: 45$
$a: c=12: 45$
$a=\frac{12}{45} c \quad a=\frac{4}{15} c$
13. On the Venn diagram, shade A' $\cap B$.

14. Solve $2 x^{2}=2-x$, giving your answer correct to 1 decimal place.
$2 x^{2}+x-2$
$x=\frac{-1 \pm \sqrt{(1)^{2}-4 \times 2 \times(-2)}}{2 \times 2}$
$x=0.8$ or -1.3
15. $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$. Point P lies on $A B$ such that $A P: P B=3: 2$. Write down the vector $\overrightarrow{A P}$.

$\overrightarrow{A B}=b-a$
$\overrightarrow{A P}=\frac{3}{5}(b-a)$
16. Solve the simultaneous equations.

$$
\begin{aligned}
& 5 x+3 y=-5 \\
& y=x+1 \\
& 5 x+3(x+1)=-5 \\
& 8 x=-8 \\
& x=-1 \\
& y=-1+1 \quad y=0
\end{aligned}
$$

17. Write as a single power of 2 :
$\frac{1}{8} \times\left(\frac{1}{32}\right)^{3}$
$2^{-3} \times\left(2^{-5}\right)^{3}=2^{-3} \times 2^{-15}=2^{-18}$
18. Solve the equation $\sin (x)=0.15$ for $0^{\circ} \leq x \leq 360^{\circ}$.

$$
\begin{aligned}
& x=\sin ^{-1}(0.15)=8.6^{\circ} \\
& x=8.6^{\circ}, 171.4^{\circ}(\text { correct to } 1 \text { d.p. })
\end{aligned}
$$

19. Work out the value of $8.5 \times 10^{4}-3 \times 10^{2}$, giving your answer in standard form.
$84700=8.47 \times 10^{4}$
20. The histogram shows information about the ages of some employees in a company. Calculate the frequencies for each group.

Age (years)

Age $(x$ years $)$	Frequency	Frequency Density
$16 \leq x<20$	$\mathbf{2 . 5} \times \mathbf{4}=\mathbf{1 0}$	$\mathbf{2 . 5}$
$20 \leq x<30$	$\mathbf{1 . 2} \times \mathbf{1 0}=\mathbf{1 2}$	$\mathbf{1 . 2}$
$30 \leq x<50$	$\mathbf{0 . 7 5} \times \mathbf{2 0}=\mathbf{1 5}$	$\mathbf{0 . 7 5}$
$50 \leq x<55$	$\mathbf{1 . 4} \times \mathbf{5}=\mathbf{7}$	$\mathbf{1 . 4}$
$55 \leq x<70$	$\mathbf{0 . 6} \times \mathbf{1 5}=\mathbf{9}$	$\mathbf{0 . 6}$

Week 6 - GCSE Maths Revision Higher Booklet 2 Answers

1. Simplify $\frac{x^{2}-49}{2 x^{2}+17 x+21}$
$\frac{x-7}{2 x+3}$
2. The diagram shows a sector of a circle of radius 7 cm . Given that the area of the sector is $10.69 \mathrm{~cm}^{2}$, work out the size of angle θ, giving your answer correct to 1 decimal place.

$\frac{\theta}{360} \times \pi \times 7^{2}=10.69 \quad \theta=25.0^{\circ}$
3. Bella invests some money in a bank account which offers 3% compound interest per annum. She leaves her money in the account for 3 years. What is the single percentage increase in the money in her account?
$1.03^{3}=1.0927 \ldots$
This is a 9.3\% correct to 1 decimal place.
4. Factorise fully: $16 x^{2}-49$
$(4 x-7)(4 x+7)$
5. Write $3.1 \dot{6} \dot{5}$ as a fraction in its simplest form. You must show your working.

$$
\text { Let } x=3.1656565 \ldots
$$

$$
1000 x=3165.6565 \ldots
$$

$$
10 x=31.656565 \ldots
$$

$$
990 x=3134
$$

$$
x=\frac{3134}{990}=\frac{1567}{495}
$$

6. Solve $x^{2}+7 x+10<0$

7. Prove algebraically that the sum of two consecutive odd numbers is a multiple of 4.

Let $2 n+1$ and $2 n+3$ be consecutive odd numbers for integer values of n.
$2 n+1+2 n+3=4 n+4$
$4(n+1)$ is, by definition, a multiple of 4 .
8. Make x the subject: $a x+b x=t$
$x(a+b)=t$
$x=\frac{t}{a+b}$
9. A line segment starts at the point $(1,3)$ and finishes at $(5,6)$. Find the equation of the perpendicular bisector to this line segment.
$m_{1}=\frac{6-3}{5-1}=\frac{3}{4}$
$m_{2}=-\frac{4}{3}$
Midpoint is $(3,4.5)$.
$y=-\frac{4}{3} x+c$
$4.5=-\frac{4}{3} \times 3+c$
$c=\frac{17}{2}$
$y=-\frac{4}{3} x+\frac{17}{2}$
10. $A D E$ and $B C E$ are straight lines. Calculate the size of angle $A B C$.

Angle CDE $=\frac{180-42}{2}=69^{\circ}$
Angle CDA $=180-69=111^{\circ}$
Angle ABC = 180-111 = 69°
11. The diagram shows the frustum of a cone. The height of the cone is 30 cm and the height of the frustum is 20 cm . The radius of the base of the cone is 9 cm . Given that the mass of the frustum is 1000 grams, work out its density, giving your answer correct to 1 decimal place.

Scale factor $=30 \div 10=\mathbf{3}$
Radius of 'top' cone $=9 \div 3=3 \mathrm{~cm}$
Volume of a cone $=\frac{1}{3} \pi r^{2} h$
Volume $=\frac{1}{3} \times \pi \times 9^{2} \times 30-\frac{1}{3} \times \pi \times 3^{2} \times 10=780 \pi \mathrm{~cm}^{3}$
Density $=1000 \div 780 \pi=0.4 \mathrm{~g} / \mathrm{cm}^{3}$
12. $a: b=\frac{1}{2}: \frac{1}{3}$ and $b: c=\frac{2}{3}: 4$. Write a as a fraction of c, giving your answer in the form $a=\frac{x}{y} c$, where x and y are integers.
$a: b=1: \frac{2}{3}$
$a: c=1: 4$
$a=\frac{1}{4} c$
13. On the Venn diagram, shade AUB'.

14. Solve $x(3 x+2)=x+1$, giving your answer correct to 1 decimal place.
$3 x^{2}+x-1=0$
$x=\frac{-1 \pm \sqrt{(1)^{2}-4 \times 3 \times(-1)}}{2 \times 3}$
$x=0.4$ or -0.8
15. $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$. Point P lies on $A B$ such that $A P: P B=3: 2$.

Write down the vector $\overrightarrow{O P}$.

$\overrightarrow{A B}=b-a$
$\overrightarrow{\mathrm{AP}}=\frac{3}{5}(\mathrm{~b}-\mathrm{a})$
$\overrightarrow{O P}=a+\frac{3}{5}(b-a)=\frac{2}{5} a+\frac{3}{5} b$
16. Solve the simultaneous equations, giving your answers in terms of a and b.
$x+y=a$
$x-y=b$
$2 x=a+b$
$x=\frac{1}{2}(a+b)$
$\frac{1}{2}(a+b)+y=a$
$y=\frac{1}{2}(a-b)$
17. Given that $27^{2 x+5}=3^{y}$, express y in terms of x.
$27^{2 x+5}=\left(3^{3}\right)^{2 x+5}=3^{6 x+15}$
$y=6 x+15$
18. Solve the equation $\sin (x)=-0.1$ for $0^{\circ} \leq x \leq 360^{\circ}$.
$x=\sin ^{-1}(-0.1)=-5.7^{\circ}$
$x=185.7^{\circ}, 354.3^{\circ}$ (correct to 1d.p.)
19. Work out the value of $4.9 \times 10^{4}-1.1 \times 10^{2}$, giving your answer in standard form.
$48890=4.889 \times 10^{4}$
20. The table shows information about the ages of some employees in a company. Fill in the missing gaps.

Age $(x$ years $)$	Frequency	Frequency Density
$16 \leq x<20$	14	$\mathbf{1 4} \div \mathbf{4}=\mathbf{3 . 5}$
$20 \leq x<30$	$\mathbf{2 . 8} \times \mathbf{1 0}=\mathbf{2 8}$	2.8
$30 \leq x<50$	6	$\mathbf{6} \div \mathbf{2 0}=\mathbf{0 . 3}$
$50 \leq x<55$	$\mathbf{1 . 6} \times \mathbf{5}=\mathbf{8}$	1.6
$55 \leq x<70$	3	$\mathbf{3} \div \mathbf{1 5}=\mathbf{0 . 2}$

Week 6 - End

1. Simplify $\frac{x^{2}-x-12}{3 x^{2}-7 x-20}$
$\frac{x+3}{3 x+5}$
2. The diagram shows a sector of a circle of radius 5 cm . Given that the perimeter of the sector is 13.05 cm , work out its area, giving your answer correct to 1 decimal place.

$13.05-2 \times 5=3.05$
$\frac{\theta}{360} \times \pi \times 10=3.05 \quad \theta=34.95 \ldots$ 。
Area $=\frac{34.95 \ldots}{360} \times \pi \times 5^{2}=7.6 \mathrm{~cm}^{2}$ (correct to 1 decimal place).
3. Bella invests some money in a bank account which offers 5% interest in the first year, then 2.5% interest compounded annually. She leaves her money in the account for 3 years. What is the single percentage increase in the money in her account?
$1.05 \times 1.025^{2}=1.1031 . .$.
This is a 10.3% increase correct to 1 decimal place.
4. Factorise fully: $4 x^{2}-3 x-10$
$(4 x+5)(x-2)$
5. Write $0.1 \dot{4} \times 0.0 ் \dot{3}$ as a fraction in its simplest form.

$$
0.1 \dot{4}=\frac{14}{99}
$$

$0.0 ் \dot{3}=\frac{3}{99}=\frac{1}{33}$
$\frac{14}{99} \times \frac{1}{33}=\frac{14}{3267}$
$\frac{14}{99} \times \frac{1}{33}=\frac{14}{3267}$
6. Solve $x^{2}+x-30>0$

7. Prove algebraically that, when the sum of the squares of two consecutive even numbers is divided by 8 , there is a remainder of 4 .

Let $2 n$ and $2 n+2$ be consecutive even numbers for integer values of n.
$(2 n)^{2}+(2 n+2)^{2}=8 n^{2}+8 n+4$
This can be written as $8\left(n^{2}+n\right)+4$ which will have a remainder of 4 when divided by 8.
8. Make x the subject: $y+2 x=a x+q$
$x(2-a)=q-y$
$x=\frac{q-y}{2-a}$ or equivalent
9. A line segment starts at the point $(-1,4)$ and finishes at $(2,3)$. Find the equation of the perpendicular bisector to this line segment.
$m_{1}=\frac{3-4}{2-(-1)}=-\frac{1}{3}$
$m_{2}=3$
Midpoint is (0.5, 3.5).
$y=3 x+c$
$3.5=3 \times 0.5+c$
$c=2$
$y=3 x+2$
10. $A D E$ and $B C E$ are straight lines. Prove that the line segments $A B$ and $C D$ are parallel.

Angle CDE $=\frac{180-58}{2}=61^{\circ}$ (base angles in an isosceles triangle are equal).

Angle CDA = angle DCB = 180-61 = 119° (angles on a straight line add to 180°).

Angle ABC = angle $180-119=61^{\circ}$ (opposite angles in a cyclic quadrilateral sum to 180°).

Angles ABC and DCB are supplementary (sum to 180°), so $A B$ is parallel to CD.
11. The diagram shows the frustum of a cone. The height of the cone is 40 cm and the height of the frustum is 30 cm . The radius of the base of the cone is 6 cm . Given that the mass of the frustum is 1500 grams, work out its density, giving your answer correct to 2 significant figures.

Scale factor $=\mathbf{4 0} \div \mathbf{1 0}=\mathbf{4}$
Radius of 'top' cone $=6 \div 4=$ 1.5 cm

Volume of a cone $=\frac{1}{3} \pi r^{2} h$

Volume $=\frac{1}{3} \times \pi \times 6^{2} \times 40-\frac{1}{3} \times \pi \times 1.5^{2} \times 10=\frac{945}{2} \pi \mathrm{~cm}^{3}$
Density $=1500 \div \frac{945}{2} \pi=1.01 \mathrm{~g} / \mathrm{cm}^{3}$
12. $a: b=\frac{1}{2}: \frac{1}{3}$ and $b: c=\frac{2}{3}: \frac{4}{9}$. Write a as a fraction of c, giving your answer in the form $a=\frac{x}{y} c$, where x and y are integers.
$a: b=1: \frac{2}{3}$
$a: c=1: \frac{4}{9}$
$a=\frac{9}{4} c$
13. On the Venn diagram, shade $A^{\prime} \cap B^{\prime}$.

14. Solve $3 x(x-2)=3 x+1$, giving your answer correct to 1 decimal place.
$3 x^{2}-9 x-1=0$
$x=\frac{9 \pm \sqrt{(-9)^{2}-4 \times 3 \times-1}}{2 \times 3}$
$x=3.1$ or -0.1
15. $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$. Point P lies on $A B$ such that $A P: P B=3: 2$. The point C lies $\frac{3}{4}$ of the way along the line OP. Write down the vector OC.

$$
\begin{aligned}
& \overrightarrow{A B}=b-a \\
& \overrightarrow{A P}=\frac{3}{5}(b-a)
\end{aligned}
$$

$\overrightarrow{O P}=a+\frac{3}{5}(b-a)=\frac{2}{5} a+\frac{3}{5} b$
$\overrightarrow{O C}=\frac{3}{4}\left(\frac{2}{5} a+\frac{3}{5} b\right)=\frac{3}{10} a+\frac{9}{20} b$
16. Solve the simultaneous equations, giving your answers in terms of x and y.
$x+y=5$
$x^{2}-y^{2}=15$
$x=5-y$
$(5-y)^{2}-y^{2}=15$
$25-10 y=15$
$10 y=10$
$y=1$
$x=4$
17. Given that $32^{3 x} \times 4^{7 x}=2^{y}$, express y in terms of x.
$32^{3 x}=\left(2^{5}\right)^{3 x}=2^{15 x}$
$4^{7 x}=\left(2^{2}\right)^{7 x}=2^{14 x}$
$32^{3 x} \times 4^{7 x}=2^{15 x} \times 2^{14 x}=2^{29 x}$
$y=29 x$
18. Solve the equation $\tan (x)=0.4$ for $0^{\circ} \leq x \leq 540^{\circ}$. Hint: There are three answers.
$x=\tan ^{-1}(0.4)=21.8^{\circ}$
$x=21.8^{\circ}, 201.8^{\circ}, 381.8^{\circ}$ (correct to 1d.p.)
19. Work out the value of $\frac{4.1 \times 10^{-5}+2.7 \times 10^{4}}{1.4 \times 10^{-2}}$, giving your answer in standard form correct to 3 significant figures.
$1928571.432 \approx 1.93 \times 10^{6}$
20. The histogram shows information about the ages of some employees in a company. Which class interval contains the median age?

Age (years)

Age (x years)	Frequency	Frequency Density
$16 \leq x<20$	$\mathbf{0 . 7 5} \times \mathbf{4}=\mathbf{3}$	$\mathbf{0 . 7 5}$
$20 \leq x<30$	$\mathbf{0 . 6} \times \mathbf{1 0}=\mathbf{6}$	$\mathbf{0 . 6}$
$30 \leq x<50$	$\mathbf{0 . 7} \times \mathbf{2 0}=\mathbf{1 4}$	$\mathbf{0 . 7}$
$50 \leq x<55$	$\mathbf{2 . 8} \times \mathbf{5}=\mathbf{1 4}$	$\mathbf{2 . 8}$
$55 \leq x<70$	$\mathbf{0 . 2} \times \mathbf{1 5}=\mathbf{3}$	$\mathbf{0 . 2}$

Total frequency $=40$

$$
\frac{40+1}{2}=20.5
$$

The 20.5th person is in the interval $30 \leq x<50$.

