

Examiners' Report June 2022

GCSE Combined Science 1SC0 2BH

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

ResultsPlus

Giving you insight to inform next steps

ResultsPlus is Pearson's free online service giving instant and detailed analysis of your students' exam results.

- See students' scores for every exam question.
- Understand how your students' performance compares with class and national averages.
- Identify potential topics, skills and types of question where students may need to develop their learning further.

For more information on ResultsPlus, or to log in, visit <u>www.edexcel.com/resultsplus</u>. Your exams officer will be able to set up your ResultsPlus account in minutes via Edexcel Online.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk.

June 2022

Publications Code 1SC0_2BH_2206_ER

All the material in this publication is copyright

© Pearson Education Ltd 2022

Introduction

The Pearson Edexcel GCSE (9-1) Paper 4 Combined Science (Higher tier) is the fourth paper taken as part of the GCSE (9-1) Combined Science qualification, and the second biology component of the course. The qualification follows a linear assessment model whereby candidates must complete all papers in the same year of certification.

Paper 4: Combined Science (Higher tier) is awarded a total of 60 marks and it is assessed by a variety of question types including multiple-choice questions, short answer questions, calculations, and an extended open-response question. Candidates should answer all questions in 1 hour and 10 minutes. The extended open-response question is identified by an asterisk (*) in the question paper to indicate that marks are also awarded for the ability to structure a response logically.

In addition, the GCSE (9-1) Combined Science qualification assesses practical knowledge and maths skills; the requirements of which are given in the specification. Furthermore, there are 6 mandatory core practical tasks that candidates must complete prior to the examination, as aspects of working scientifically are also assessed in questions throughout the paper.

Paper 4: Combined Science (Higher tier) contains questions assessing the content from topics 1 and topics 6 to 9 as identified in the specification. In this examination series, candidates were required to respond to questions that tested their knowledge and understanding of the movement of substances through plants, the structure and function of the heart and blood vessels, the role of bacteria in the nitrogen cycle, hormones including adrenalin, thyroxine and the hormones of the menstrual cycle, as well as type 2 diabetes and conservation and reforestation.

Questions designed to assess practical work included sampling habitats, which is a core practical and applying practical knowledge to measuring transpiration in plants and the effect of exercise on heart rate, which are recommended practicals. Questions on these included the controlling of variables, a control and making improvements to methods. The maths skills assessment in this paper related to questions requiring rate calculations, unit conversions, percentages and applying skills using a given equation to calculate capture and recapture data.

Most candidates were able to access the extended writing response, demonstrating good application of knowledge on how reforestation and animal conservation projects affect biodiversity. Many candidates were able to demonstrate a good level of knowledge in the early questions, including the structure and function of the heart and blood vessels. Candidates also showed a relatively good understanding of the role of the hormones in the contraceptive pill as well as the effect on the body of exercise. Higher ability candidates were able to apply their knowledge of the human hormones, adrenalin and thyroxine and some of these candidates could explain the roles of bacteria in the nitrogen cycle including their role in crop rotation. The responses to the questions assessing aspects of practical work have improved since the specification started. This improvement is expected as teachers increase their understanding of this aspect. Candidates of all abilities were able to answer questions using their practical skills and knowledge, including the identification of some controlled variables and improvements. However, candidates must read these practical questions carefully to ensure they are describing appropriate variables. Some candidates remain confused as to the difference between controlling a variable and using a control. Across the paper, candidates showed they could extract data from graphs and calculate differences between two values. Candidates of all abilities were able to access the straightforward maths questions of calculating a percentage, although candidates lost marks on this for incorrectly rounding the answer or giving an answer to a decimal place rather than a whole number.

Question 1 (a)(ii)

Most candidates were able to recognise one structure of the xylem including thick cell walls or a long continuous tube. There was some mention of lignin or the fact that the cells making up the xylem were dead cells. Many candidates referred to the function of the xylem and not structural features for at least one answer.

(ii) Describe **two** features of the structure of xylem vessels that can be seen in Figure 1.

(2)

(2)

2 has no ond Walls

This scored two marks for lignin and the xylem vessels having no end walls. These are two structural features, many responses referred to functions of xylem.

(ii) Describe **two** features of the structure of xylem vessels that can be seen in Figure 1.

Kylem vessels have thick water walls

2 the Fluid can only Flow one way through lem Vespel.

(ii) Describe **two** features of the structure of xylem vessels that can be seen in Figure 1.

(2) 1 Hollow tube 2 Transports particles up the plant

Question 1 (b)(i)

Most candidates gained the mark for recognising that the water uptake had increased. Some went on to provide some linkage as to why this occurred including the idea that the fan had created an air flow or that water was lost from the plant or the stomata.

(i) Explain why switching on the fan caused a change in the volume of water taken up by the plant.

(3)Wa

This scored two marks for stating that the plant takes up more water and linking this to the idea that this is because more water is lost through the stomata. (i) Explain why switching on the fan caused a change in the volume of water taken up by the plant.

by switching on the fan, the volume of water
increased as more air flow means the rate
of transpiration in a plant is faster
and was able to take in and move
mor water

This is a complete explanation linking the volume of water uptake increasing with there being more airflow causing a faster rate of transpiration and was given three marks. (3)

(i) Explain why switching on the fan caused a change in the volume of water taken up by the plant.

US:~	g he	fcn	meci	rs mo	re C	02	3
being	absorbe	e l 59	he	plant	each	min	<i>∪1-e,</i>
and	th3	increa	Ses	weber	interter	2 10	iune
0.5	the	plant	'3	using	both	the	CQ
and				pichasy			

(3)

References to gas exchange as a result of the fan were not awarded marks but were a commonly seen misconception. This response scored one mark for increased water intake.

Question 1 (b)(ii)

This question was mostly answered correctly, the most common responses were as a comparison or to show a difference. Some candidates referred to a control but there was some confusion with control variables.

(ii) Give **one** reason why the volume of water taken up by the plant was also measured when the fan was not switched on.

(1)show be difference the for

Made.

Taking measurements without the fan on will mean that the results will show the difference the fan made gained the mark.

(ii) Give **one** reason why the volume of water taken up by the plant was also measured when the fan was not switched on.

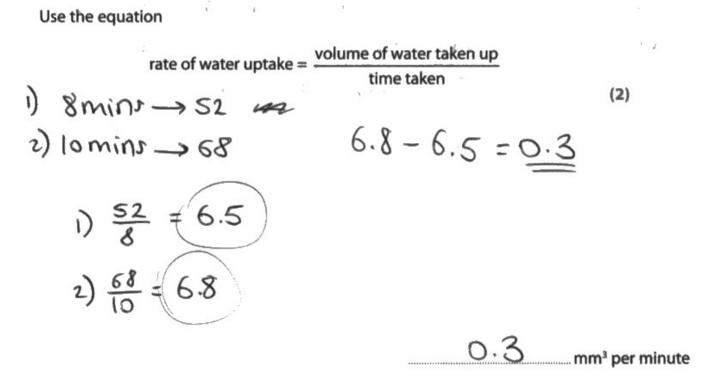
For a control test.

(1)

(ii) Give **one** reason why the volume of water taken up by the plant was also measured when the fan was not switched on.

To show that the plants were taking the same volume of water up to make the test fair.

(1)



Fair test is a description that should be avoided. Refer to variables that should be controlled or a control that can be used for a baseline measurement.

Question 1 (b)(iii)

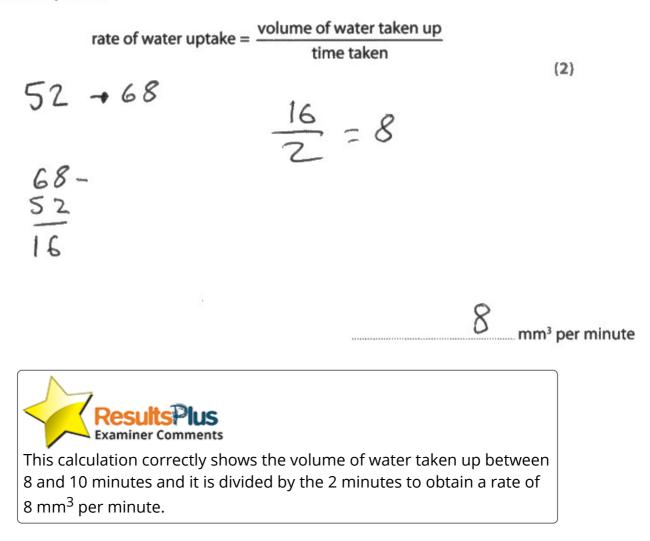
Most candidates gained full marks for this question. However, some struggled with finding the correct values from the graph and/or omitted to then divide by 2.

(iii) Calculate the rate of water uptake from 8 minutes to 10 minutes when the fan was switched on.

This calculation is not correct but one mark was awarded for the two correct readings of the volume of water taken up at 8 and 10 minutes.

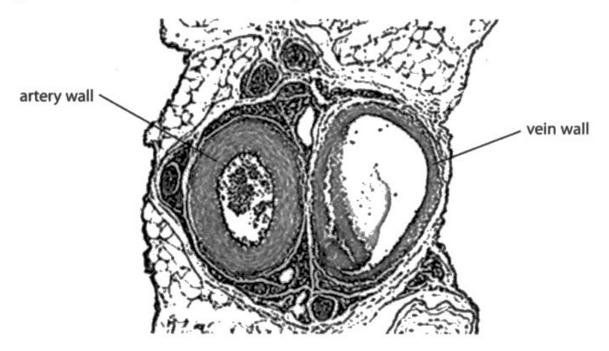
This response scored one mark. If they had not shown their working, they would have got zero.

(iii) Calculate the rate of water uptake from 8 minutes to 10 minutes when the fan was switched on.


Use the equation

rate of water uptake = $\frac{\text{volume of water taken up}}{\text{time taken}}$ (2) $\frac{8}{2} = 4$ 39 - 5 - 31 - 5 = 84 mm³ per minute

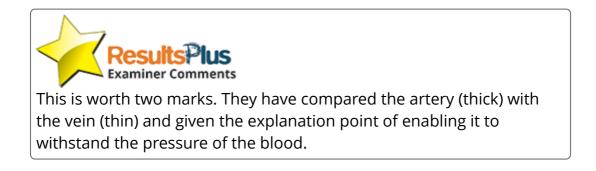
This is worth one mark. Incorrect graph readings but recognised the need to divide the volume of water taken up by two minutes to get the rate.


(iii) Calculate the rate of water uptake from 8 minutes to 10 minutes when the fan was switched on.

Use the equation

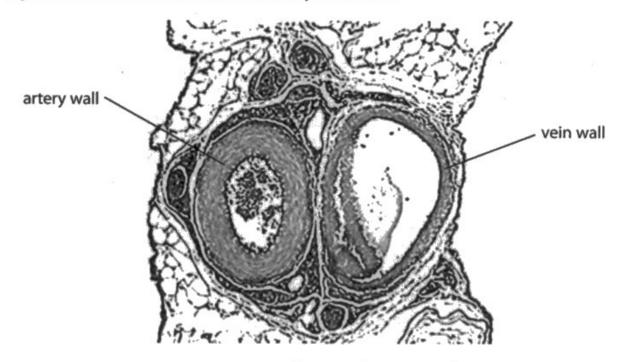
Question 2 (a)(i)

It was well understood that the artery wall was in general thicker than the wall of the vein but the reasons for this were less well understood. Linking this to higher blood pressure in the artery was seen less often. 2 (a) Figure 3 shows a cross-section of an artery and a vein.



(Source: © The University of Kansas Medical Center)

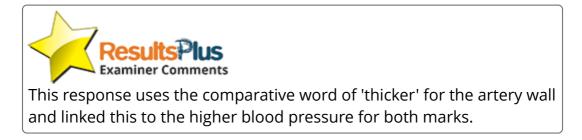
Figure 3


(i) Explain **one** difference between the artery wall and the vein wall shown in Figure 3.

the	vein	wall	18	thin	and	the	
arteri				thick		elastic	
this	13	+0 c		and			~e
of	the	610	50	pump	29 (ound	the
bod	4					1	

(2)

2 (a) Figure 3 shows a cross-section of an artery and a vein.


(Source: © The University of Kansas Medical Center)

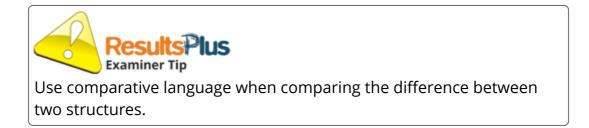
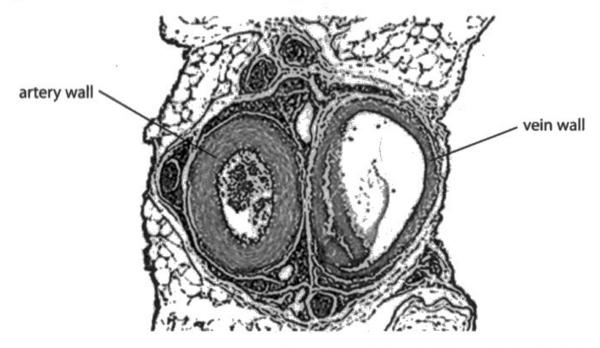

(2)

Figure 3


 Explain one difference between the artery wall and the vein wall shown in Figure 3.

the artery wall is thicker than the Vien wave because the artenes have a much higher pressure of blood to transport so needs more support bence the thicker wall

2 (a) Figure 3 shows a cross-section of an artery and a vein.

(Source: © The University of Kansas Medical Center)

Figure 3

(i) Explain **one** difference between the artery wall and the vein wall shown in Figure 3.

(2)

The artery wan is a lot thicker than the vein wan to allow

the arrery want to expand and decrease in order for

blogd to these growthrough.

This was one mark for a lot thicker, there is no linked explanation point for the high pressure blood.

Question 2 (a)(ii)

Many candidates did not recognise that a structure found in veins but not arteries are valves and the mark was only obtained by some of the candidates.

Question 2 (b)(i)

Most candidates gained full marks as they were able to calculate that 3 is 60% of 5 $\mathrm{dm^3}$

(b) A human body has 5 dm³ of blood.

At rest 20% of the blood travels to the muscles.

During exercise 60% of the blood travels to the muscles.

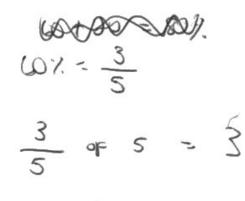
(i) Calculate the volume of blood travelling to the muscles during exercise.

5×0·2=1 5×0·6=3 3-1=2

2 dm³

÷

(2)


This was one mark for working out 60% of 5 to be 3. They have then subtracted it from 20% of 5 ending up with the incorrect final answer.

(b) A human body has 5 dm³ of blood.

At rest 20% of the blood travels to the muscles.

During exercise 60% of the blood travels to the muscles.

(i) Calculate the volume of blood travelling to the muscles during exercise.

(2)

(b) A human body has 5 dm³ of blood.

At rest 20% of the blood travels to the muscles.

During exercise 60% of the blood travels to the muscles.

(i) Calculate the volume of blood travelling to the muscles during exercise.

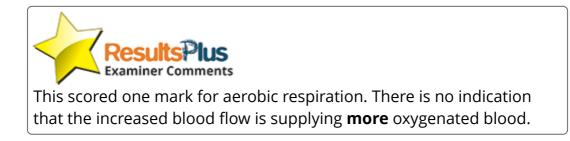
which results in the correct answer is acceptable.

 $5 dm^3$ blood $5 \times 0.60 = 3$ 3 dm³ Examiner Comments This is one of the methods outlined on the mark scheme. Any method

(2)

Question 2 (b)(ii)

This item needed to make a comparative statement of more, irrespective of which explanation was given. Candidates were limited to one or zero marks if this wasn't given. Many candidates just gave a statement about more oxygen being needed without explaining why this was necessary.


 Explain one reason why there is an increase in blood flow to muscles during exercise.

(2)Good camps oxygen and e then exercising the muscles need Bb more exugen to nplere respirance ive N the muscles.

(ii) Explain one reason why there is an increase in blood flow to muscles during exercise.

(2)Blood israrely icher arow lungs, to provide oxyge blood for Also, nutries respiration e musdes to egnired at a

(ii) Explain **one** reason why there is an increase in blood flow to muscles during exercise.

There is an increase in blood flow because par the rate of aerobic increasing respiration is taking place meaning that the body needs more axyaph. In order for the heart to take in more oxygen, the heart contracts more, leading to it pumping more blood around the body.

(2)

(ii) Explain **one** reason why there is an increase in blood flow to muscles during exercise.

(2)Because respiration officer accoribic taking place the hel ling muscl hoctic lads 3 actic Ø GC 40 blued CLMOV 6 pcov.a resulting increased oxuger blood flow. (Total for Question 2 = 7 marks)

This also gained two marks for the idea that lactic acid needs to be removed and that it is a product of respiration. This is the second alternative of the explanations shown on the mark scheme.

Question 3 (a)(ii)

Most candidates recognised that unit conversions require a calculation involving a 1000 but many divided rather than multiplied and so did not obtain the mark.

Question 3 (b)(i)

More candidates answered the first part of the question correctly, identifying X as decomposers, but often stated nitrogen-fixing bacteria, de-nitrifying bacteria or just bacteria for Y in the second part.

(b) Figure 5 shows part of the nitrogen cycle. dead animals and plants X→ ammonia Y→ nitrates Figure 5

(i) Identify the types of microorganism involved in process X and process Y.

(2) X OPACYCLE NICHTY DECENTION

Y OPACYCLE NICHTY DECENTION

Y OPACYCLE NICHTY DECENTION

This scored zero as nitrifying bacteria is against X and not Y and denitrifying bacteria is incorrect for Y.

(b) Figure 5 shows part of the nitrogen cycle.

dead animals and plants $\stackrel{\mathsf{X}}{\longrightarrow}$ ammonia $\stackrel{\mathsf{Y}}{\longrightarrow}$ nitrates

Figure 5

(i) Identify the types of microorganism involved in process X and process Y.

x Micrifiging bacenia

Decomposers is correct for X and nitrifying bacteria is correct for Y so both marks were awarded.

(2)

(b) Figure 5 shows part of the nitrogen cycle.

dead animals and plants \xrightarrow{X} ammonia \xrightarrow{Y} nitrates Figure 5 (i) Identify the types of microorganism involved in process X and process Y. h., (2) Decoultours Balturia Χ..... Y This gained one mark. Bacteria is not sufficient for the mark.

Question 3 (b)(ii)

Most candidates did not have an understanding of crop rotation. Many candidates discussed leaving fields empty to replenish for a season or that different crops had different nitrate requirements. Of those that did have some understanding, the use of legumes or named plants such as peas and beans were seen. Very few responses referred to nitrogen-fixing bacteria, there was some confusion with nitrate-fixing bacteria and also that the crops themselves were able to fix nitrogen.

(ii) Explain how crop rotation increases nitrate levels in the soil. 100t nodules (3)(3) The plantin Contain netrogen fixing backsin which turns the atmospheric N2 into netrate / Ammonia Nit Can be used the by other and in the later years. This helps to improve the amaint of netrates in the soil for prandit to use to make proteins and growth. So after each year, there will still be nitrated in the soil for different plants.

This response explains the role of crop rotation in full detail. It has root nodules, nitrogen fixing bacteria and the bacteria using the atmospheric nitrogen. They also have the bacteria producing ammonia, which is the additional guidance, although they already had this mark.

(ii) Explain how crop rotation increases nitrate levels in the soil.

(3)

The rotation of crops thereases but rate
lovels in the soil because The crops contain
nutrates which can be released unto the
soil depending on the soncentration groatenz
rotating the crops allows nutrates to be released
unto the soil increasing nitrate levels.

This answer mainly repeats the question without adding any further details. The response was scored zero.

(ii) Explain how crop rotation increases nitrate levels in the soil.

Grops	cor	tain n	itrospn-	ATKIN 60	oterio	that convertes
nuorge	en i	n arme	share	to not	<u>ttes</u> .	The is exchanged
huten	<u>e</u> ve	Dit	Soil	knough	t~0	Phloem.

This response scores two marks for the nitrogen-fixing bacteria converting nitrogen. They do not refer to the roots or leguminous plants.

(3)

Question 3 (b)(iii)

Most candidates were able to gain the mark for identifying that the crops would grow more, but fewer were able to identify that the nitrates produced proteins or amino acids for the growth, with many candidates opting instead to explain how improved growth would improve crop yields which is a repeat of the question.

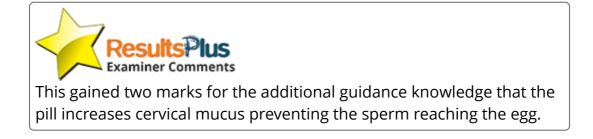
(iii) Explain why increased nitrate levels in the soil improve crop yield.

(2)tler yield because 10 N ritrate to synthesis ndicates improved hieldy (Total for Ouestion 3 = 9 marks)

This response has a linked explanation of the use of nitrates to synthesise proteins for growth for full marks.

(iii) Explain why increased nitrate levels in the soil improve crop yield.

(2)tes is that cops & absorb and when Because ritra none crops are able to to intrate levels


This response links nitrates for growth to get a higher yield but does not extend this to include the idea that proteins are needed, only obtaining one mark.

Question 4 (a)(i)

Many candidates scored at least one mark for this question with some correctly linking oestrogen and progesterone to the suppression of LH and FSH. If they identified these two hormones, then it was unusual for them not to give the link to follicle development/ovulation. A significant number of candidates only considered the role of oestrogen and progesterone and if this was the case then they rarely scored as they linked this to the thickening of the uterus lining or to inhibition of a menstrual period. A number of candidates scored two marks for linking the thicker cervical mucus to blockage of sperm.

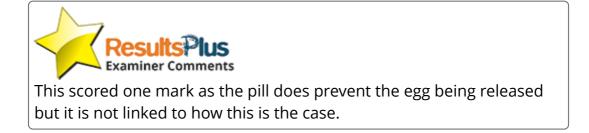
- 4 (a) The combined contraceptive pill contains artificial versions of oestrogen and progesterone.
 - (i) Explain how the combined contraceptive pill prevents pregnancy.

(combined	االو	increas	e	the	
l	ervical	mucus	02	sperr	n	Cant
ſ	reach the	e egg				

(2)

- 4 (a) The combined contraceptive pill contains artificial versions of oestrogen and progesterone.
 - (i) Explain how the combined contraceptive pill prevents pregnancy.

sing the levels of destrogen and progesterine hibit the release of FSH and LH, which are the Increasing homones that release and mature the egg cell. without FSH the egg connet mature and therefore cannot be pertilised. 1H and


(2)

This response gives the explanation of the hormones LH and FSH being inhibited and the prevention of the egg maturing or being released.

- 4 (a) The combined contraceptive pill contains artificial versions of oestrogen and progesterone.
 - (i) Explain how the combined contraceptive pill prevents pregnancy.

(2)and progesterone which Desta released.

Question 4 (a)(ii)

This question was not accurately answered with many candidates giving the idea of forgetting to take the pill or side effects of the pill which is not a disadvantage of using the combined pill as the only form of contraception. The majority of correct responses identified that STIs could still be spread, with a smaller – but still significant number – referring to the slight chance of pregnancy.

(ii) When taken correctly, the combined pill can be over 99% effective.

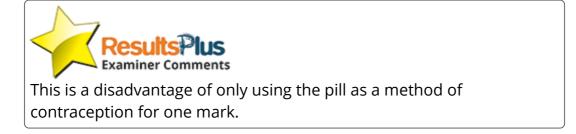
Taking the combined pill can lead to weight gain.

Give **one** other disadvantage of using the combined pill as the only method of contraception.

Mood swings.

This is a side effect of hormone use/imbalance but it is not a disadvantage of only taking the pill as a method for contraception.

(ii) When taken correctly, the combined pill can be over 99% effective.

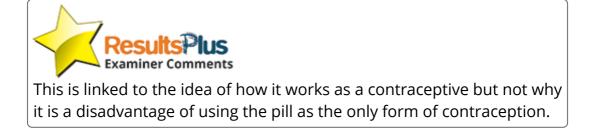

Taking the combined pill can lead to weight gain.

Give **one** other disadvantage of using the combined pill as the only method of contraception.

(1)

(1)

It doesn't protect you from sexually transmitted infections


(ii) When taken correctly, the combined pill can be over 99% effective.

Taking the combined pill can lead to weight gain.

Give **one** other disadvantage of using the combined pill as the only method of contraception.

(1)

delays yensional cycle.

Question 4 (b)

Candidates on this paper found this question challenging. Some candidates gained a mark for stating that blood glucose levels were high or that the body was resistant to insulin. Many candidates think that the inability to control blood glucose levels is because insulin is not produced or that the body cells are "immune" to insulin. Few candidates were able to relate the resistance to insulin to the inability to convert glucose in the blood to glycogen in the liver.

(b) Excessive weight gain and obesity increase the likelihood of developing type 2 diabetes.

Explain the effect of type 2 diabetes on the body.

(3)t your work. 0910 Fel

This is worth three marks for the body not responding to insulin, so blood glucose levels are high and glucose is not turned to glycogen.

Make sure you spell glycogen, glucose and glucagon correctly in responses.

- (b) Excessive weight gain and obesity increase the likelihood of developing type 2 diabetes.
 - Explain the effect of type 2 diabetes on the body.

(3) can become resistant and to react not pancreass Insulin can't the produce to metch glucose insulm the TRU Chongh glucose can become excess lead 12 burst.

This scores one mark for cells becoming resistant to insulin. Although they have referred to excess glucose it is not in the blood, so this mark was not given.

When taking about glucose levels make sure you link it to **blood** glucose levels.

(b) Excessive weight gain and obesity increase the likelihood of developing type 2 diabetes.

Explain the effect of type 2 diabetes on the body.

Type 2 diabetes means you become imponents immune to your insulin and there is a risk of it getting too Hing you your glucose levels getting too and h and Willing you.

This did not score a mark. Immune is rejected against the idea of resistance as it is incorrect. The glucose is too high but it is not blood glucose.

(3)

Question 4 (c)

Many responses to this question limited themselves by only obtaining conclusions from the data. Some candidates were unable to correctly interpret the data for blood glucose and red blood cells as within the normal range, with some stating they were over. Most candidates concentrated only on the elevated levels of TSH and thyroxine and failed to appreciate the significance of the tests that were within the normal range. Those who recognised the role of thyroxine frequently gave the idea of increased metabolism gaining at least two marks for this aspect. Some high scoring responses showed knowledge of the role TSH and its stimulation of the thyroid gland to produce thyroxine.

(c) A woman had unexplained weight loss and fatigue. She had blood tests to investigate the cause of these symptoms.

Figure 6 shows the results.

blood test	woman's result	normal range		
TSH level	5.6 mU/l	0.4 to 4.9 mU/l		
thyroxine level	27.5 pmol/l	9.0 to 21.0 pmol/l		
red blood cell count	$5.2 imes 10^6$ cells/µl	4.2 to 5.4 \times 106 cells/ μl		
glucose level	82.0 mg/dl	72.0 to 99.0 mg/dl		

Figure 6

Comment on the results of these blood tests and the possible causes of the woman's weight loss and fatigue.

The womans TSH and thyroxine lards are way above the normal range. her red blood cell count and glucox levels are inthe normal range She has enough glucose and red blood cells for the normal range. too much TSH any Chyroxine.

This scores two marks for extracting the information from the table correctly; referring to TSH and thyroxine being above the normal range and red blood cells and glucose being in the normal range. The candidate needed to extend the answer to indicate what these mean for the woman. (4)

(c) A woman had unexplained weight loss and fatigue. She had blood tests to investigate the cause of these symptoms.

Figure 6 shows the results.

	blood test	woman's result	normal range
I	TSH level	5.6 mU/l	0.4 to 4.9 mU/l
	thyroxine level	27.5 pmol/l	9.0 to 21.0 pmol/l
T	red blood cell count	$5.2 imes10^6$ cells/µl \swarrow	4.2 to 5.4 \times 106 cells/µl
ſ	glucose level	82.0 mg/dl 🧹	72.0 to 99.0 mg/dl

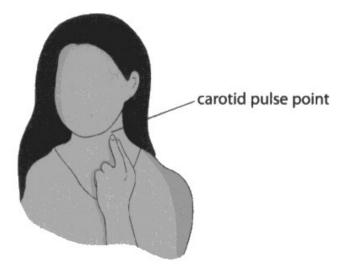
Figure 6

Comment on the results of these blood tests and the possible causes of the woman's weight loss and fatigue.

(4)

Bonn ma red blood cell count and aucose levels are with in the normal range for a numan, nawever the main levels of mytoxine and tsh CMUTOID shimulahing homemone) suggest she is suffering from hyper - Mytoid shimulahing homemone) suggest she is suffering from hyper - Mytoid is no. Which is when the total over shimulates the mytoid gland into releasing higher main usually levels of mytoxine which he ep me bodie body is met about rate steady. Because mere is no invich thypoxine the metabousing of the waren increases and alucose or ower startches used to cheate energy are over shimulated leading decreased stored tats which cause wheight loss-proceeding must meight loss causes fangued. as the body losses stored energy.

This is an excellent response that has extracted the information from the table for both the hormones, the red blood cells and glucose and how they relate to the normal range. They link the high level of TSH to overstimulating the thyroid gland causing hyperthyroidism and a high metabolic rate.


Question 5 (a)(i)

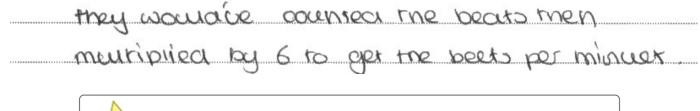
A surprisingly high number of candidates struggled to identify how to calculate the beats per minute, whilst a significant number interpreted the question as to how to feel the pulse rather than count it. It is important that candidates read the information given as often this will hold the key to the answer.

5 The effect of different types of exercise on the heart rate of an athlete was investigated.

The athlete counted the number of beats in 10 seconds at the carotid artery pulse point, as shown in Figure 7.

This measurement was used to calculate the heart rate.

(Source: © dityazemli/Shutterstock)

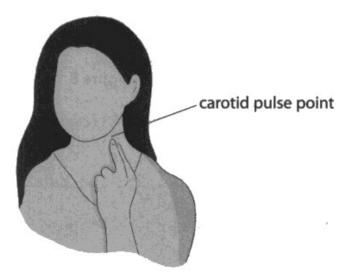

Figure 7

The athlete exercised for 20 minutes.

The heart rate was recorded every 5 minutes during each type of exercise.

(a) (i) State how the heart rate was calculated using this method.

(1)



This response shows that the candidate has read the information in the question and that the number of beats in 10 seconds needs to be multiplied by 6 to get the heart rate which is measured in beats per minute. 5 The effect of different types of exercise on the heart rate of an athlete was investigated.

The athlete counted the number of beats in 10 seconds at the carotid artery pulse point, as shown in Figure 7.

This measurement was used to calculate the heart rate.

(Source: © dityazemli/Shutterstock)

Figure 7

The athlete exercised for 20 minutes.

The heart rate was recorded every 5 minutes during each type of exercise.

(a) (i) State how the heart rate was calculated using this method.

(1)

heartbeats per minute

Examiner Comments This is how heart rate is measured but does not show how it could be calculated from the number of beats in 10 seconds.

Question 5 (a)(ii)

Many candidates were able to identify a heart rate monitor or fitness monitor (smartwatch or Fitbit were seen) but a significant number stated that a stopwatch could be used. Taking readings for longer or repeating readings were frequently seen.

(ii) Give **two** ways of improving the method used to obtain the data needed to calculate the heart rate.

(2)the heart rate the Livice Measure inkreal. machine f Count heart rate. Its more accurate

This scored two marks as it shows two improvements to the method used to obtain the data needed; repeating the readings and using a monitor.

(ii) Give **two** ways of improving the method used to obtain the data needed to calculate the heart rate.

(2)

1 count the beats for 30 seconds and use a stop natch. 2 times this number by 2 to find your heart rate per minite.

This only scored one mark as the second comment is how to calculate the beats per minute. The mark was awarded for counting the beats for longer.

(ii) Give **two** ways of improving the method used to obtain the data needed to calculate the heart rate.

(2)experiment resul pain.

Doing the experiment a few more times is the idea of repeating for one mark. Measuring the pulse at different points is not an improvement to the method.

Question 5 (a)(iii)

It appears that candidates are improving when answering this style of question. They were asked to comment on the data with the majority of candidates able to talk about heart rate increasing when running and quoting relevant data. They were less able to talk about a small fluctuation when walking, although many candidates gained this mark by stating it rose and fell between 90bpm and 96bpm. The levelling out of the heart rate when running between 15 and 20 minutes at 180bpm was missed by many candidates.

Figure 8 shows the results of this investigation.

type of exercise	heart rate in bpm								
	0 minutes	5 minutes	10 minutes	15 minutes	20 minutes				
running	90	156	168	180	180				
walking	90	96	90	96	90				

Figure 8

(iii) Comment on the difference in the heart rates during these types of exercise.

(3)the heart rat mare fl nevenses ber Certan

This has one difference in that running increases the heart rate more than walking. It does not use data to illustrate the levelling off or refer to the pattern of the heart rate when walking.

Include data in your answers to illustrate the points you have made.

Figure 8 shows the results of this investigation.

type of	heart rate in bpm								
exercise	0 minutes	5 minutes	10 minutes	15 minutes	20 minutes				
running	90	156	168	180	180				
walking	90	96	90	96	90				

Figure 8

(3)

(iii) Comment on the difference in the heart rates during these types of exercise.

Running	had le	reneged	her	hear	
vote mo					
rate when			1		
Incrand h					
not Increase					
waltung					
between		- 0		18143141414141414141414	*********

This has running increasing HR more than walking which is in the additional guidance. It also has the idea of it increasing till 15 minutes and then not increasing further and while walking the HR fluctuated.

Figure 8 shows the results of this investigation.

type of	heart rate in bpm								
exercise	0 minutes	5 minutes	10 minutes	15 minutes	20 minutes				
running	90	156	168	180	180				
walking	90	96	90	96	90				

Figure 8

(iii) Comment on the difference in the heart rates during these types of exercise.

(3) when the person is running heart rate is increasing rapio when maximum of 180 bpm but 0 walking the rt rate rou Same

This has an increasing heart rate for running and roughly staying the same for walking for two marks. They do not get the levelling off mark as there is no indication of levelling off at 180 b.p.m, just that it reached a maximum.

Question 5 (b)(i)

The adrenal gland was identified by most candidates as the gland that produces adrenalin.

Question 5 (b)(ii)

The understanding of the effect of adrenalin on the liver proved to be a problem with some candidates just linking adrenalin to the fight or flight response without giving details. Answers relating to higher blood pressure or more blood flow were also seen. Few candidates recognised that the effect on the liver is the conversion of glycogen in the liver into glucose causing an increase in blood glucose levels. Some of the higher-level responses were able to recognise that adrenalin binds to receptor sites on the liver.

(ii) Explain the effect of adrenalin on liver cells during exercise.

(3)

It causes the liver cells to convert glycogen into glucose. Mis speeds up respiration because more glucose is produced, creating more energy.

This response correctly identifies the conversion of glucose into glycogen for two marks. They could have improved the response by mentioning that the glucose is released into the blood.

(ii) Explain the effect of adrenalin on liver cells during exercise.

(3) Adrenalis binds to releptus in the levir cells to the break dawn glyloger stores and plot release glucese he blood sheam go the body has when exurity.

This detailed explanation includes all the marking points; binding to receptors, the breakdown of glycogen, releasing glucose and release into the blood stream.

Question 5 (c)

This question was well answered with most candidates able to identify lactic acid building up. Some candidates correctly linked this to anaerobic respiration to attain full marks. Some responses incorrectly linked the change in pH to sweating more or water loss in muscles.

(c) After high intensity exercise, the pH of muscles can decrease from pH 7.0 to pH 6.3.

Explain this change in pH.

this is because the muscle Sta 11 due to lack to respine anaerobically, un Lactic acid build painh and can be Change the neutral pH to slightly acidic.

This scores both marks for linking anaerobic respiration to lactic acid.

Make sure you do not refer to respiration as respirating at this is incorrect.

(2)

(c) After high intensity exercise, the pH of muscles can decrease from pH 7.0 to pH 6.3.

Explain this change in pH.

(2) As when the oxygen is fed theft no longer present in the body the glucose that is left turns into lactic acid which burns muscles turning ph slightly acidic

This scores one mark for lactic acid, it does not give details of why the lactic acid gets produced which would complete the explanation.

Question 6 (a)(i)

Many candidates scored all three marks for this question. The most common mistake was leaving the estimate of the population as a decimal instead of rounding to a whole number, candidates did not understand that a fraction of an organism is not a possibility. A small number of candidates did not subtract the number they calculated from 50 but were still able to gain two of the three available marks. 6 (a) Scientists use a technique called mark and recapture to estimate animal populations in a habitat.

A sample of the population is captured and a harmless mark is added to each animal.

These animals are released and after a period of time the population is sampled again.

This second sample includes some recaptured animals that have marks on them.

The population can be estimated using this equation

population size = number marked in the first sample × size of the second sample number recaptured in the second sample

A scientist used this technique to determine the change in the population size of snails in a pond from March to July.

Figure 9 shows the results.

month number marked in the first sample		size of the second sample	number of recaptured animals	population size
March	18	22	8	50
July	12	18	10	26

Figure 9

 Using data from Figure 9, calculate the difference in the population size from March to July.

(3)

24

$$\frac{12 \times 22}{10} = 26.44$$

50 - 2.6 = 2.4

Difference in the population size

This has used the incorrect number for size of second sample from the table (they have used the value for March) but they do round it to the nearest whole number and subtract it to get the difference so were awarded two marks in total using the error carried forward.

Always show workings to calculations in case you make a mistake.

6 (a) Scientists use a technique called mark and recapture to estimate animal populations in a habitat.

A sample of the population is captured and a harmless mark is added to each animal.

These animals are released and after a period of time the population is sampled again.

This second sample includes some recaptured animals that have marks on them.

The population can be estimated using this equation

population size = $\frac{\text{number marked in the first sample } \times \text{ size of the second sample}}{\text{number recaptured in the second sample}}$

A scientist used this technique to determine the change in the population size of snails in a pond from March to July.

Figure 9 shows the results.

month	number marked in the first sample	size of the second sample	number of recaptured animals	population size	
March	18	22	8	50	
July	12	18	10		

Figure 9

(i) Using data from Figure 9, calculate the difference in the population size from March to July.

(3)

Difference in the population size 39.6

This scored zero as they have the wrong numbers from the table. There is no rounding or subtraction from 50. 6 (a) Scientists use a technique called mark and recapture to estimate animal populations in a habitat.

A sample of the population is captured and a harmless mark is added to each animal.

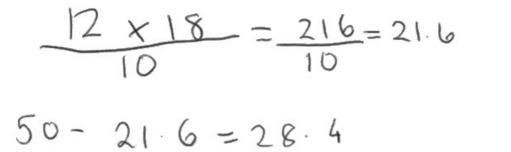
These animals are released and after a period of time the population is sampled again.

This second sample includes some recaptured animals that have marks on them.

The population can be estimated using this equation

population size = $\frac{\text{number marked in the first sample} \times \text{size of the second sample}}{\text{number recaptured in the second sample}}$

A scientist used this technique to determine the change in the population size of snails in a pond from March to July.


Figure 9 shows the results.

month	number marked in the first sample	size of the second sample	number of recaptured animals	population size	
March	18	22	8	50	
July	12	18	10	21.6	

Figure 9

(i) Using data from Figure 9, calculate the difference in the population size from March to July.

(3)

Difference in the population size 28 - 4

This was awarded two marks as it was not rounded to a whole organism.

Remember when working with organisms you cannot have a fraction of an organism.

6 (a) Scientists use a technique called mark and recapture to estimate animal populations in a habitat.

A sample of the population is captured and a harmless mark is added to each animal.

These animals are released and after a period of time the population is sampled again.

This second sample includes some recaptured animals that have marks on them.

The population can be estimated using this equation

population size = $\frac{\text{number marked in the first sample } \times \text{ size of the second sample}}{\text{number recaptured in the second sample}}$

A scientist used this technique to determine the change in the population size of snails in a pond from March to July.

Figure 9 shows the results.

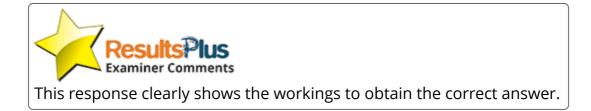
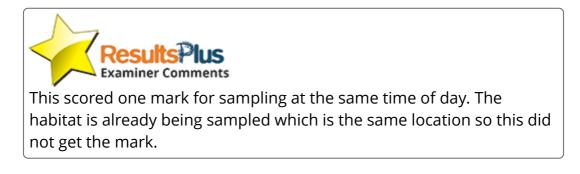

month	number marked in the first sample	size of the second sample	number of recaptured animals	population size	
March	18	22	8	50	
July	12	18	10		

Figure 9

(i) Using data from Figure 9, calculate the difference in the population size from March to July.

Difference in the population size 28

(3)


Question 6 (a)(ii)

Many candidates had little knowledge of how to control the sampling and provided responses including the weather, temperature or area within the lake. The higher ability candidates mentioned the same points (such as a method of marking the snails with a permanent pen, same time spent sampling, or the same time between the first and the second sample). Some candidates showed no understanding of how to sample a population and suggested that capturing the same number of animals in each sample was needed.

(ii) State **two** factors the scientist should control when sampling the habitat in March and July.

(2)

Time same location.

(ii) State two factors the scientist should control when sampling the habitat in March and July. (2)tine between resampling nal 1

The capturing of organisms is the sample size so not a factor that should be controlled. The same time between the first and second sample is a variable to be controlled so this response was awarded one mark.

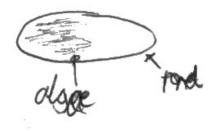
(ii) State two factors the scientist should control when sampling the habitat in March and July.

The time of day the sample it.

2 Hay 4 sample it for. lona

These are both variables that should be controlled when sampling the habitat, so this response is worth two marks.

(2)


Question 6 (b)

Many candidates gained a mark by identifying fertilisers as a factor that causes eutrophication but then very few went on to link this to a build-up of nitrates. Many candidates talked about the effects of eutrophication rather than the cause, referring to algal blooms and plants in the pond being unable to photosynthesis. It is important that candidates read the question carefully before answering.

(b) This pond is affected by eutrophication.

Explain one possible cause of eutrophication.

(2)

This response has the idea of the fertilisers entering the water increasing the nitrates so was awarded two marks.

(b) This pond is affected by eutrophication.

Explain one possible cause of eutrophication.

(2) ********** cause 00 COP

This is one mark for the fertilisers but the overgrown algae is a description of eutrophication and not a cause.

Read the question carefully and make sure you answer what you have been asked.

Question 6 (c)

Most candidates were able to give a good account of the benefits of reforestation and link it to at least one atmospheric gas. The best responses were able to relate this to climate change/global warming. However, fewer candidates could give a good account of animal conservation with most only really able to gain credit from the "stop animals from going extinct" idea. Some candidates were able to relate animal conservation to the maintenance of food webs but very few made any reference to the maintenance or importance of maintaining genetic diversity; some responses did refer to breeding programmes in zoos and ecotourism and the majority of these were able to achieve level 3. Some candidates wrote very good responses on reforestation, but ignored animal conservation entirely, limiting themselves to level 1. A significant number of candidates gave limited information on animal conservation programmes, invariably the preservation of species, and were limited to level 2, despite good responses on reforestation.

*(c) Reforestation has a beneficial effect on air composition and biodiversity. Animal conservation projects can also have a beneficial effect on biodiversity. Explain the beneficial effects of reforestation and animal conservation projects.

This response only refers to aspects of animal conservation so was restricted to level 1. It has preventing extinction for a benefit and links it to the food chain, which is how animal conservation helps improve biodiversity, so was awarded two marks.

(6)

*(c) Reforestation has a beneficial effect on air composition and biodiversity. Animal conservation projects can also have a beneficial effect on biodiversity. Explain the beneficial effects of reforestation and animal conservation projects.

(6)

biodiversity is when animals in ecosystem awork together to survive and gradualli environment. refore station tho. SMA animals habitats for most food α a al mostly nests in bu build high up to From aulau theor offspring, showing beneficial refore station ID tho, life. animal conservation OF projec angered anina both cruel and as bine encagino an animal as this beco it Stop 66 Speci 0 to but reproduce in hope or highering th environmen extind species so it doesn't become generation to come.

This was a level 2 response. They have the idea of habitats for reforestation but there is no further detail for this aspect, limiting the response to level 2. For animal conservation they have the idea of increasing the birth rate to prevent extinction and enclosing animals in habitats being protective. This allowed them to get four marks for the top of the level as it is how animal conservation projects will improve biodiversity. *(c) Reforestation has a beneficial effect on air composition and biodiversity. Animal conservation projects can also have a beneficial effect on biodiversity. Explain the beneficial effects of reforestation and animal conservation projects.

(6)

- Referestation 3 the act of vestoning plants that were native to a region but were removed for the reason deforestation. The native plants encourage natural habitats For organisms to feed (mate) shelle. These plants also therease levels of oxygen as biomass will have thereased. Referestation also means that their could be more resources for the use of humans e.g. medicinal plants, animals for consumption. This also allows for stable food chains/populations The fact the plants are native ensures endigenous species three. Animal conservation projects entary protecting a species that is near to ettendo and is commonly partnered with breeding programmes. This means that etbriction is less Whely which is esential for mantaning prodiversity this ensures stable food chains and manageable specie populations. The more animals on the earth ensure a higher biomass which is essential for managing pests and supporting human life. It Can also protect ecosystems as specier andireluat are essential for the wider community, they biotic and abiotic factors ncludho

This is a level 3 response but it is limited to five marks because it does not give the effect of reforestation on the levels of carbon dioxide in the atmosphere.

It has a detailed explanation for both reforestation and animal conservation.

*(c) Reforestation has a beneficial effect on air composition and biodiversity.
 Animal conservation projects can also have a beneficial effect on biodiversity.
 Explain the beneficial effects of reforestation and animal conservation projects.

	Resor	estation	allows	Mor	e t	i tve	ees
łu	,	develor	o. This	means	the	amuvi	7+ 05
Pho	tusyn	thesis	increuse:	s. This	ber	nesits	Gir
Cuw	npositi	un as	s it n	neuns	Mure	carbon	dioxide
Srum	the	atmosp	here is	being	taken	in o	nd more
Oxyger	1 \$	will be	distr	released	into	the	utmosphe
I+	Cun	ulso	benesn	t biud	iversity	45	it gives
Mure	Spe	úes	Shelter	and u	p pla	ce ta	, nest.
this	Cuu	ld mu	whe incre	case the	e dis	sevent	anu unt
OF	bird	Specie	5,50-	exumple.			

(6)

Anir	nul	LUNS	ervatio	n c	un	hui	le	4	benesicio	a 1
esse	ct	as	ít	cui	111	ull	UW	the	Species	US
									ertinct	
									🖝 thut	
Spec	ies	has	and	l sei	nd	it	buck	out	istu	the
wil	0. Th	is l	will	prevent		extinct	ion.			

This has sufficient detail for six marks. They refer to the atmospheric gases involved in reforestation and the idea of introducing animals back into the wild for animal conservation, which is sufficient detail to enable level 3 to be awarded.

Paper Summary

Based on their performance on this paper, candidates should:

- recognise that the word 'explain' means additional scientific information is needed that is linked to the answer given.
- understand that when comparisons between two sets of data or two structures are being made, that the language used in responses should be comparative – 'greater', 'faster', 'quicker', 'more' etc.
- read the information given in the introduction to the question but avoid repeating it in the answer as it will not gain credit.
- ensure that methods for core practicals are understood including the differences between controls and control variables. Candidates should use scientific terminology more frequently when answering questions related to practical tasks.
- make sure that the roles of the different hormones as well as the different types of diabetes are clearly understood.
- ensure that when two aspects are required in an extended open response that both aspects are included in the response, to a similar level of detail if possible.
- be clear on the roles of bacteria and microorganisms in the nitrogen cycle.
- ensure that they consistently apply rules for rounding up numerical answers and understand that fractions of organisms are not possible. Read mathematical questions carefully to note whether an answer is required in standard form or to a specified number of significant figures.

Grade boundaries

Grade boundaries for this, and all other papers, can be found on the website on this link:

https://qualifications.pearson.com/en/support/support-topics/results-certification/gradeboundaries.html

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL.